
»' ,

UNCLASSIFIED

UNLIMITED DISTRIBUTION

Rapidly Evolving Distributed Systems

by Bridging the Deployment Gap
Final Report

September 28, 2000

Alexander Wolf
(Principal Investigator)

Dennis Heimbigner

(Co-Principal Investigator)

Computer Science Department

University of Colorado
Boulder, CO 80309-0430
Email: alw@cs.colorado.edu
Telephone: 303-492-5263
Fax: 303-492-2844

Final Report for

DARPA Order E575

AFRL Contract F30602-98-2-0163

Contract Period: 4/6/98-6/28/2000
Contract Amount: $300,000

The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U. S. Government.

DTIC QUALITY IBgBBOHID 4

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

20001030 081

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE

September 28, 2000

3. REPORT TYPE AND DATES COVERED

Final Report for period 4/6/98-6/28/2000

4. TITLE AND SUBTITLE

Rapidly Evolving Distributed Systems by Bridging the Deployment Gap

6. AUTHOR(S)

Alexander Wolf, Associate Professor, University of Colorado
Dennis Heimbigner, Research Associate Professor, University of Colorado

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES)
Regents of the University of Colorado
Office of Contracts and Grants
Boulder, CO 80309-0572

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
DARPA/ISO, 3701 N. Fairfax Dr., Arlington. VA 22203-1704

AFRL/IFTD, 525 Brooks Rd., Rome, NY 13441-4505

5. FUNDING NUMBERS
DARPA Order E575
AFRL Contract F30602-98-2-0163

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U. S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution A: Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The University of Colorado EDCS project has addressed problems in managing the configurations of evolved systems
and deploying those systems back out into the field. The essential premise of this project was that configuration and
deployment of distributed systems of systems is a critical piece of the cycle of evolutionary development of complex
software systems. The University of Colorado EDCS project has been successful in achieving its objective: producing
innovative, useful, and interesting research results in the areas of software configuration and deployment. These
research results were embodied in five prototype systems targeting five configuration and deployment problems:
NUCM (distributed CM), SRM (software release), DVS (distributed development), Software Dock (distributed wide-
area deployment), and {\Siena} (internet-scale event notification). The results from this project have been widely
disseminated in the form of publications, software distributions to over 600 sites, technical transfers to commercial
practice, and through the graduation of quality Ph.D. and M.S. students.
14. SUBJECT TERMS
Configuration management, deployment, event notification, software engineering,
distributed computing

17. SECURITY
CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

IS. NUMBER OF PAGES

38
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. Z39-18 Z98-102

Abstract

The University of Colorado EDCS project has addressed problems in managing the config-
urations of evolved systems and deploying those systems back out into the field. The essential
premise of this project was that configuration and deployment of distributed systems of sys-
tems is a critical piece of the cycle of evolutionary development of complex software systems.

The University of Colorado EDCS project has been successful in achieving its objective: pro-
ducing innovative, useful, and interesting research results in the areas of software configuration

and deployment. These research results were embodied in five prototype systems targeting
five configuration and deployment problems: NUCM (distributed CM), SRM (software re-

lease), DVS (distributed development), Software Dock (distributed wide-area deployment),
and Siena (internet-scale event notification). The results from this project have been widely

disseminated in the form of publications, software distributions to over 600 sites, technical
transfers to commercial practice, and through the graduation of quality Ph. D. and M. S.
students.

Contents

Abstract i

1 Introduction 1

2 Project Objectives and Approach 1

3 Results 2
3.1 Software Prototypes 3

3.1.1 NUCM 3

3.1.2 SRM 6

3.1.3 DVS 11
3.1.4 Software Dock 13

3.1.5 Siena 21
3.2 Technical Transfer 25

3.2.1 Prototype Availability 25
3.2.2 Other Technical Transfer Efforts 25

3.3 Students 27

4 Conclusions 28

5 References and Bibliography 29

6 Symbols, Abbreviations, and Acronyms 33

List of Figures

1 NUCM Data Model Example. . 5

2 NUCM WebDAV Browser Interface 6

3 SRM Client Download Interface (using Netcape) 7

4 SRM Download Information Interface . . . 9
5 SRM Download Dependencies Interface 9
6 SRM Upload Menu 10
7 SRM Upload Interface 10
8 SRM Upload Dependency Selection Interface. 10
9 DVS Architecture 12
10 Deployment Life Cycle 14
11 Software Dock Architecture 15
12 Field Dock Main Interface 19
13 Field Dock Property Manipulation Interface 19
14 Enterprise-level Administrators Workbench Interface 19
15 Distributed Event Notification Service 22
16 Siena Event Notification Example 24

17 Siena Event Filter Example 24

18 Hierarchical Routing Example 25

List of Tables

1 Software Dock Performance Comparison 20
2 Alphabetical List of Graduated Students Associated with this Contract 27

in

1 Introduction

Configuration and deployment of distributed systems of systems is an essential piece of the
evolutionary development of complex software systems (EDCS). Software Evolution is asso-
ciated with a cyclic development, implementation, and deployment process that starts with
recognition that an existing software system is failing to meet its requirements or has had new
requirements levied against its operation. A software redevelopment process is performed to
modify its design and to implement a new version of a system capable of meeting its revised
requirements. After redevelopment is complete, it is necessary to take the crucial step of
deploying the evolved software back into the field to "complete the evolutionary cycle."

This project, referred to as University of Colorado EDCS, targeted the last step of the pro-

cess and addressed problems in managing the configurations of evolved systems and deploying

those systems back out into the field. This EDCS project was intended to be closely tied to

the Arcadia project (contract F30602-94-C-0253), and was to provide a path by which con-

figuration management and deployment research from the Arcadia project could be inserted
into the DARPA EDCS program.

2 Project Objectives and Approach

Wide-area networks have become an essential context for many Department of Defense software
systems. Currently, DOD operates over 100 wide-area networks, and this number will increase
as a result of new programs such as Battlefield Awareness (BADD), Command Post of the
Future (CPOF), Global Information Grid (GIG), and Joint Battlespace Infosphere (JBI).
The stated goal underlying this trend is to enable the movement of information at all levels,
replacing the movement of people with the movement of information.

Inherent in the existence of these global networks is an opportunity to leverage the con-

nectivity of the network for software system configuration and deployment. The advantages
of network deployment include the following.

• Timeliness — As soon as a new software system version or update becomes available,
users can be given access to it.

• Continuous evolution — The semi-continuous connectivity offered by a network allows
software producers to offer a much higher level of service to software consumers, moving
beyond mere installation to encompass other activities such as activation, update, and
adaptation. The resulting benefit is a lower total cost of ownership because less effort
must be expended on maintaining deployed software.

• Reuse — The systems developed by software producers are more visible and more eas-

ily incorporated into larger systems, thus enhancing the reuse of a given system and
promoting the development of systems of systems.

1

• Recovery/Repair — Network based distribution provides a repository of components that

can be used as a baseline for detecting corrupted systems and as a source of components
for purposes of repair.

In addition, there is an opportunity to support complex systems of systems — systems com-
posed from component subsystems — where the components come from multiple sources and
where there are many relationships among the components that must be honored and main-
tained.

The overall approach of this project was to develop new methods, techniques, and ap-
proaches for providing for the configuration management and deployment of complex software
systems into a distributed environment.

Section 3 provides a brief description of the research produced under this contract. In all
cases, the corresponding research publications should be referenced to obtain the details.

3 Results

The primary accomplishment of this project was the development of new approaches for sup-
porting the configuration and deployment of complex software systems. We are at the forefront
in configuration management research, and we have brought our capabilities in this area to
the DARPA EDCS program.

The detailed accomplishments of this project fall into four categories: software prototypes,
technical transfer, Ph. D. and M. S. students graduated, and publications. The first three are
detailed in the following sections. A reverse chronological list of all publications is provided
in Section 5.

3.1 Software Prototypes

The main vehicle for our research has been the development of a number of research prototype
software systems. Each of these systems embodies important new capabilities in the area of
configuration management and deployment. Five prototypes were developed in whole or part
under this project.

1. NUCM - a generic, tailorable, peer-to-peer repository supporting distributed Configu-
ration Management.

2. SRM - a tool to manage the release of multiple, interdependent software systems from
distributed sites.

3. D VS - a tool to support distributed authoring and versioning of documents with complex

structure, and to support multiple developers at multiple sites over a wide-area network.

4. Software Dock - a distributed, agent-based framework supporting software system de-
ployment over a wide-area network.

5. Siena - an Internet-scale distributed event notification service allowing applications and
people to coordinate in such activities as updating software system deployments.

The objectives, approach, and contributions of these prototypes are described in the following
sections.

3.1.1 NUCM

NUCM [21, 26] is a generic, peer-to-peer repository supporting distributed Configuration Man-
agement (CM). Its programmatic interface allows for the rapid construction and evolution of
CM systems, whereas its underlying distribution mechanism facilitates Configuration Man-
agement in the context of large-scale, wide-area software development.

NUCM separates CM repositories, which are the stores for versions of software artifacts and
information about these artifacts, from CM policies, which are the specific procedures for cre-
ating, evolving, and assembling versions of artifacts maintained in the repository. Combined,

a CM repository and a CM policy comprise a complete CM system. But it is their separation
into two architectural components that, through reuse of the NUCM CM repository, facilitates
the rapid development of complete CM systems.

With NUCM's generic programmatic interface it becomes feasible to develop a CM system
that specifically supports and is tailored to an organization's internal software development
process and policies. Until now, an organization was forced to buy a commercial CM system

and adopt the process and policies incorporated in the acquired CM system. NUCM reverses
this approach and instead allows the CM system to be specialized to the actual process and
policies taking place.

NUCM provides the following benefits to a CM system developer:

• Rapid development. NUCM's reusable CM repository, combined with its generic inter-
face, allows for the rapid construction of complete CM systems.

• Distributed operation. Any CM system developed with NUCM inherits NUCM's dis-

tributed nature, and can have CM clients and servers spread across the world.

• Scalability. NUCM's peer-to-peer architecture, combined with its lightweight implemen-
tation, presents a CM system developer with a scalable repository capable of operating

in wide-area, large-scale Inter- and Intranets.

• Flexibility. The NUCM programmatic interface is generic, and supports the creation of
a wide variety of CM policies.

• Type independence. NUCM can store and version any type of artifact.

• Evolvability. The NUCM repository supports the controlled evolution of artifacts
through its versioning interface.

Data Model. The data model of NUCM is based on a flexible grouping mechanism in
which atoms (individually versioned artifacts) and collections (groups of versioned artifacts)
are treated identically. The data model maps naturally into the file system so that existing
tools can manipulate the artifacts in their native environment. Furthermore, it is policy
independent, and does not imply any relationship among the versions of an artifact.

The NUCM data model is analogous to that of a distributed, versioned file system with
links and attributes. NUCM models artifacts as files and collections of artifacts as directories.
Similar to a file system, collections (directories) can contain both artifacts (files) and other
collections. Again, similar to a file system, NUCM supports links between collections and
artifacts, so that the same artifact can be referenced in any number of collections. Figure 1
illustrates an example of the data model.

The NUCM versioning schema is orthogonal to the data model. In NUCM, artifacts as well
as collections can have versions. The versioning schema is also completely independent of the
relationships occurring between artifacts and collections. Two different versions of a collection
can contain different versions of the same artifacts and/or completely different artifacts.

Distribution Model. NUCM provides the concepts of physical and logical repositories. A
physical repository is the actual store for some set of artifacts at a particular site. A logical

repository is a group of one or more repositories acting as a single repository. CM policies
interact with a logical repository and can therefore manipulate any of the artifacts irrespective
of physical location. Many different distribution topologies can be modeled by NUCM, such as
client-server or peer-to-peer. NUCM physical repositories and CM policies can be distributed
throughout the world, while all are part of a single CM system.

prqject_l
♦ Artifacts and collections
♦ Links
♦ Orthogonal versioning
♦ Data model maps onto the file system

collection

artifact

Figure 1: NUCM Data Model Example.

Generic Programmatic Interface. NUCM's programmatic interface supports CM system
developers with a policy programming language. For example, the familiar check-in/check-out
policy reduces to:

• check-out: open + testandsetattribute + initiatechange

• check-in: commitchange + removeattribute

This simplicity is intrinsic to NUCM; its interface functions have been carefully tuned to be
simple yet powerful.

Experience. NUCM is in use in two systems that are publicly available, SRM and DVS,
as well as one experimental system, WebDAV. The discussion of SRM is in Section 3:1.2
and the discussion of DVS is in Section 3.1.3. Our interest in WebDAV (Web Distributed
Authoring and Versioning) stems from the participation of one of our members, Andre van
der Hoek, in the initial standardization working group. This also led us to construct the first
implementation of WebDAV. This was possible only because of the existence of NUCM, which
made the effort to produce a WebDAV server relatively easy.

Figure 2 shows the interface for our WebDAV server operating through a NetScape browser.
The important capability provided by WebDAV is that it allows one to edit web pages. Our
prototype is actually more capable than the final WebDAV because it supports version trees
over web pages. The graph show in that figure illustrates the version tree and can be used to
retrieve specific versions. Our prototype was based on a near final draft WebDAV standard.
The final standard removed versioning and deferred its inclusion to a later time.

na BM \Ä8W Go Bnuinia Option* oire«tory «Mo* j Help

Back] Forwanlf Wumel Briaadj tfrtil t.uytf Open { Phnt—{ f-

I träum: jhttp://serl. er. Colorado, cdu: 1971/1 j

CU-SERL WebOAV Interface

iProJcct URfc |ittp://serta.a>lorado.edu.l97t/pre)ect [I

lYojrct Cocurn-rt*. T T,"-- ""lüTTHE

i Versisn Tree i Document

CD

OB!

<A HREF-V/../cgi/olla/gohona
<HR>
</m>
«—Eiidof Header Button toi

CENTER>
<IMC SRC-'imagellglf ALT-
MI ></CENTER>
CENTERXIMC SRC-Vllow

<H3>C6mposers</H3><
<CUL>

3 Q^HBI,,,,,,,,,,!^

Shew 1 Show Version! Checkout 1 CheiAln I

ml ««nlon 1.1.1.1 <in*te<l «jl~ ■!

TI'xA Aj>f>lat W*bOAV irfnaig

Figure 2: NUCM WebDAV Browser Interface.

Both the development time and development effort of these systems (WebDAV, SRM, and
DVS) were greatly reduced due to the use of NUCM. For example, DVS is a fully functional,
distributed versioning system that required only 1500 new lines of C source code.

3.1.2 SRM

Software release management is the process through which software is made available to and
obtained by its users. Complicating software release management is the increasing tendency
for software to be constructed as a "system of systems", assembled from pre-existing, in-
dependently produced, and independently released systems. In these situations, accurately
managing dependencies among the systems is critical to the successful deployment of the
system of systems.

SRM is a tool that addresses the software release management challenge. It supports
the release of systems of systems from multiple, geographically distributed organizations. In

particular, SRM tracks dependency information to automate and optimize the retrieval of

components. Both developers and users of software systems are supported by SRM. Developers
are supported by a simple release process that hides distribution. Users are supported by a
simple retrieval process that allows the retrieval, via the Web, of a system of systems in a
single step and as a single package.

E 6«clc FewfO *■!•■«_ Hem» Bwtn....Qua» Arm. i "^

»SRI, SoftWW«

;*i:EV2 ;'|3 IrtwrtW.

«»aMx» A**.«»» r^ta-M^yt* Sfiteri

b»ic-aa

) 1.3.1.3 t lt.afp* ;3'Ü1C.«

JjJPÖ rc^jÄT^; :
üsr-ttöw vr-.wn i*Ttr V^rvT

■ J.K

'2D
JfZZ....

£5-16-w»r* fTT-r ansüße t prcnw tr

■N^M ^T*^"^wr*"ra"t5T

j j; 3 H '«t Cy«j *■ f»y *«« *Q«U C^****^1 i

E fi3t;,<ado'ca,>«>i

Figure 3: SRM Client Download Interface (using Netcape).

SRM provides the following benefits to an organization:

• Process automation. SRM incorporates and enforces a standard and fully automated
release process.

• Consistency. Users always receive a consistent system of systems.

• Flexibility. SRM supports multiple release tracks, each with its own set of users that
have access to its releases.

• Scalability. SRM can be configured to support an arbitrary number of cooperating
organizations.

• Web integration. Software that is available on the Web from "non-SRM" organizations
is integrated by SRM.

• Uniformity. All releases from all organizations can be released via the same mechanism.

• Evolvability. SRM's flexible dependency mechanism supports the evolution of software
through multiple versions, each potentially with different dependencies.

Because of its versatility, SRM serves many different settings:

•

•

•

An organization uses SRM as its release mechanism of choice to publish software on

the Web. Various release groups are set up to distinguish alpha, beta, and production
releases.

An organization uses SRM as an intermediary between CM systems. For example, one
department might use PCMS, whereas another one uses RCS. SRM can be used to ship
and track updates that are sent back and forth.

A group of loosely coupled organizations uses SRM as its unifying release mechanism of
choice. A single server is placed at one of the organizations to which all other organiza-
tions release their software using an SRM client.

A group of tightly cooperating, geographically dispersed organizations uses SRM to
release their software both to the other organizations as well as to the outside world.
Each organization maintains its own SRM server, but all SRM servers cooperate to
present users with a single view.

Prototype. The SRM prototype presents two interfaces to the world. Figure 3 is the in-
terface presented to users wishing to obtain software from an SRM repository. The interface

is actually a web page produced by SRM as a cgi-bin script. This initial page shows all of
the systems available for download through SRM. The user checks a system and pushes the
button at the bottom.

SRM provides a second web page (Figure 4) that provides information about the chosen
system. The bottom of this page (Figure 5), shows other systems upon which the chosen
system depends. The set of dependencies is shown both graphically and in a list of user
choosable items. The user is offered the option of:

• Obtaining the system alone,

• Obtaining the system with all of the systems upon which it depends, or

• Obtaining the system with a selected set of the systems upon which it depends.

SRM presents a different set of interfaces for users wishing to insert software into the SRM
repository. Examples of this SRM user interface are illustrated in Figure 6 shows the initial
interface. Users are provided a menu of options.

Figure 7 shows the interface that results when the modify option is chosen and SRM

version 2.2b is chosen. Users are expected to fill in this form for an initial upload, and modify
it otherwise. This page describes the software and indicates how the SRM repository is to
obtain the software (typically as a tar file).

As part of the software release process, a user is prompted to indicate the other software
systems upon which their system is dependent. Figure 8 shows this interface. A client selects

8

:fl» E4I \HPC oo Oi»w«rtciur —
|3

uUtrkfe *«AAvu-ti^'(

Sort r-o-wsw ma« Hun» Bwen quo Pnrt

MM «I»«» i.» ^*6*Mtf

\9t7XetP*tW.

|

iPC*Ü*D3IC ;5*-t3-ff1 1
it'ftTWPffttr^ ;*flt«w3f><l£fHMf< J

•E'ft*? :«o-i r .-.'•>■ :»j

»fcitfii*« : tttkwwtvtif C«J»ftllfc t

!A<-**Xl)ltV IF«!-

jftifiOtKreStrt j&ffT*!*?1***»-»**«*!!)»']
!F-iap-**t |S!«»a j

:C,T«*r*

i £*l^i Swarr, fjnj<*.Ü!=C.*«ifo.t#H&'.

öaaöeC-awiEff*

«Mnuicj lr<r Ur ix-». C«BfJlo»tii« x»tt««tc teiecre
twMiwitf; JUT tfe» «ctuwi»? tmJrtffj fo: »zi-+**c* to* i*

At-.tf

111

Figure 4: SRM Download Information Interface.

[g B«t«Mp*: SDK xmlaana 2.2b j

'Ft« E(K V1«w Go ConwKjni<8l(>r

j|**gi"::Sontwrfc*.£ tec«»*: R.trj^//tfw« c» =olor*d«.t<feycqi-fci»/cqiv;ao/-iMV?r^

| Baclc t-or.^M Reload Home Sean* Gude Prsnt

1 CJsiiCMS.mOTJ IE!

jGf*5RH2?i>]; i G?tSRM 3 2D ffnfl 8gipc?»c5vgsin pgp?n5encei:| ■

Trift pafle wwgf nwttsd hySHM

ffi^ >'A<ta» 08 ^1

Figure 5: SRM Download Dependencies Interface.

Submit System Release

Modify System Release

: Remove System Release

P Retrieve System Release

Help

Figure 6: SRM Upload Menu.
& «odifj System. Stoiaaco gjg

»>»*iK»f ^*J

%«tafi fhfaM« ^S*^^^a^i^^^^^^^^^

Bwotart Pan» "&-<'-& ™ "* ~~

uotm Arm '.-. if »v<e ^j-i
L«M. ■w**f*'.: :I»M-MI

mimtofr »•■VI. J i.i«i*r>

w##ly5 -*-
:^%namjj*wi -|I*.«H ."*««. j VkiM»»

nw*nn» >.« Jti»» l,i»r.z*-.w..■+"•■.!'

%*&&%;■.

•*#v«*** rni^rfw» i*ia«r*i».«(i*iaÄKfcri.o-».^*WKh *:

>*rt*«rf fry *fe» -*««? Ci«»t««t}i«s wUfcwETT «inn **

Xi.ii „*>**> »J «.*>■. 4. •' .»* ■■» « ■•f«M«\ il'Üll "
.-jpWMffcM* fee ' * 'i

:—|r .•* ••"»-• «H#v*t«^ * - . , „^ »^«-.

<u»M-

Ommt *«** A&* ;

•**»'»» » »«■wrwwi ■ »rt**'««nvtaK?
)Mwf<«te«rUrH; I

»*»w o*** J^Ü^Üli u<—»i f»»i i^| w

Figure 7: SRM Upload Interface.

•t
: = : Mir.«-.*«

< - •

JK-09'399'! & 9c«eaa» fiat* taünä Snta«
&*-06-*@ - * fra»n »««■. Jraiyt« tot*

,.. Si»ttlbst*t VMV&JKLM sf Mtifsefc« «■

iiv i "i 'i iin >

Figure 8: SRM Upload Dependency Selection Interface.

10

the list of supporting systems within SRM. This allows a retrieving client to obtain everything
needed in one package. Finally, a user can specify a license to be provided to the user at
download time (not shown).

Experience. SRM currently serves as the release mechanism for the software developed

by the University of Colorado SERL group(http://www. cs.colorado.edu/serl/software) and by

the University of Massachusetts LASER group (http://laser.cs.umass.edu/tools/). During
the lifetime of the EDCS program, SRM was also used as the primary release mechanism for
software produced by the EDCS projects. A central server, located at the Software Engineering
Institute, served as the repository to which participating organizations released their systems.
Subsequently, these systems were retrieved by users from all over the world.

3.1.3 DVS

DVS is a revision control system supporting distributed authoring and versioning of documents

with complex structure. It supports multiple developers at multiple sites over the Internet.
DVS differs from most other systems in allowing each document to be located at a different
site, but shared and modified by users at all sites.

DVS is implemented on top of NUCM (Section 3.1.1), which allows DVS to be very light-
weight. This is in contrast to existing commercial systems that have similar properties, but
which are costly and bulky to install. In particular, DVS's physical repositories (below) are re-
alized by NUCM servers, while the NUCM library provides basic access to artifacts, workspace
management, and distribution.

The architecture of DVS (Figure 9) is composed of one logical repository and one or more
workspaces. The logical repository contains artifacts that are under configuration manage-
ment. Internally, the logical repository is realized by one or more physical repositories. A
workspace is a per-user environment in which artifacts can be viewed, copied, and changed.
DVS regulates the interactions between a workspace and the logical repository, for example,
by checking in and out artifacts.

The data model implemented by DVS is an extension of the underlying NUCM model (see
Section 3.1.1 and Figure 1). It provides a distributed, versioned file system with links and
attributes. DVS models artifacts as files and collections of artifacts as directories. Similar to
a file system, collections (directories) can contain both artifacts (files) and other collections.
Again, similar to a file system, DVS supports links between collections and artifacts, so that
the same artifact can be referenced in any number of collections.

NUCM itself specifies no specific versioning policy. So a major part of DVS is concerned
with the definition and implementation of such a specific versioning policy. In this case, DVS

implements simple linear versioning with versions numbered 1, 2, etc. The DVS versioning
schema is orthogonal to the data model. In DVS, artifacts as well as collections can have
versions. The versioning schema is also completely independent of the relationships occurring

11

Figure 9: DVS Architecture.

between artifacts and collections. Two different versions of a collection can contain different
versions of the same artifacts and/or completely different artifacts.

The mapping between the logical repository and the physical storage can be arbitrarily

customized at the level of granularity of the single artifact. In other words, every artifact can
be stored in a different repository, allowing the author to exploit "locality" by storing each
artifact closer to the main author or the person that will access it most frequently.

Prototype. DVS consists of thirteen basic commands: co, ci, close, link, unlink, lock, unlock,

list, log, setlog, printlocks, whatsnew, sync.
Most DVS commands can operate recursively following either the structure of the

workspace or the structure of collections in the repository. The command co and ci respec-
tively check out and check in versioned entities. Both co and ci can be applied to artifacts and
collections. The co command can optionally lock a file and open it for change provided no one
else holds the lock. The ci command requires that the file be currently checked out for change.

Locks on artifacts can be directly acquired or released with lock and unlock. When inserting a
new artifact with ci, an implicit link is also created with the current working collection. The
link and unlink commands explicitly create and remove links between artifacts and collections.

When storing and retrieving artifacts to and from the repository, DVS records some meta-
data together with each artifact or collection. Typically, a version log is maintained for each
artifact, log, setlog, printlocks, and list are used to access those meta-data.

Besides the basic access and data model manipulation functions, DVS provides a set of
utility services that facilitate distributed cooperation. They are whatsnew and sync. The

whatsnew command informs a user of new revisions of artifacts and the sync command brings
the content of the workspace up to date with respect to the content of the repository.

12

Experience. Originally, the purpose of DVS was to validate the NUCM approach, but now

it is in regular use by SERL for distributed document development. DVS has also been used
in several authoring efforts involving people from up to five sites distributed across the United
States.

3.1.4 Software Dock

The connectivity of large networks, such as the Internet, is affecting how software deployment
is being performed. The simple notion of providing a complete installation procedure for
a software system on a CD-ROM is giving way to a more sophisticated notion of ongoing

cooperation and negotiation among software producers and consumers. This connectivity and

cooperation allows software producers to offer their customers high-level deployment services

that were previously not possible. In the past, only software system installation was widely

supported, but already support for the update process is becoming more common. Support

for other software deployment processes, though, is still virtually non-existent.

New software deployment technologies are necessary if software producers are expected to
accept more responsibility for the long-term operation of their software systems. In order to
support software deployment, new deployment technologies must:

• operate on a variety of platforms and network environments, ranging from single sites
to the entire Internet,

• provide a semantic model for describing a wide range of software systems in order to
facilitate some level of software deployment process automation,

• provide a semantic model of target sites for deployment in order to describe the context
in which deployment processes occur, and

• provide decentralized control for both software producers and consumers.

The Software Dock [11, 13, 14, 15, 22, 27] research project addresses many of these con-

cerns. The Software Dock is a system of loosely coupled, cooperating, distributed components.
The Software Dock supports software producers by providing the release dock that acts as a
repository of software system releases. At the heart of the release dock is a standard semantic
schema for describing the deployment requirements of software systems. The field dock compo-
nent of the Software Dock supports the consumer by providing an interface to the consumer's
resources, configuration, and deployed software systems. The Software Dock employs agents
that travel from release docks to field docks in order to perform specific software deployment

tasks while docked at a field dock. The agents perform their tasks by interpreting the se-
mantic descriptions of both the software systems and the target consumer site. A wide-area

event system connects release docks to field docks and enables asynchronous, bi-directional
connectivity.

13

C levek 3pm(

:
;ase

5nt

(Rel< 1
I

Release-side (Producer) 1 Retire j

1
1 T

Field-side (Consumer) Install 1
\ I i * I 1

[Update][Reconfig I! Adapt j| Activate |[Remove

W IF *'

i
(Deactivate)

Figure 10: Deployment Life Cycle.

Software Deployment Life Cycle. In the past, software deployment was largely defined
as the installation of a software system; a view of software deployment that is simplistic and
incomplete. Software deployment is actually a collection of interrelated activities that form
the software deployment life cycle. This life cycle, as defined by this research and diagramed
in Figure 10, is an evolving collection of processes that include release, retire, install, activate,
deactivate, reconfigure, update, adapt, and remove. Defining this life cycle is important be-
cause it indicates the new kinds of activities that the software producer may want to provide
when moving beyond the mere installation of software. The resulting benefit to the software

consumer is a lowered total cost of ownership since less effort is required to maintain the
software that they own.

Architecture. The Software Dock research project addresses support for software deploy-

ment processes by creating a framework that enables cooperation among software producers
themselves and between software producers and software consumers. The Software Dock ar-
chitecture (Figure 11) defines components that represent these two main participants in the
software deployment problem space. The release dock represents the software producer and
the field dock represents the software consumer. In addition to these components the Software
Dock employs agents to perform specific deployment process functionality and a wide-area
event system to provide connectivity between the release docks and the field docks.

In the Software Dock architecture, the release dock is a server residing within a software
producing organization. The purpose of the release dock is to serve as a release repository for
the software systems that the software producer provides. The release dock provides a Web-
based release mechanism that is not wholly unlike the release mechanisms that are currently
in use; it provides a browser-accessible means for software consumers to browse and select
software for deployment.

The release dock, though, is more sophisticated than most current release mechanisms.
Within the release dock, each software release is described using a standard deployment

14

Release
Dock

(Agent Agent

(Agent ■*••..

Release docks represent the producer
and are a repository of software releases

Agents provide deployment
process functionality _.^

Wide-area event service
provides connectivity

Agent

Agent

Agent

HE

Field docks represent the consumer and
provide an interface to the consumer site

Figure 11: Software Dock Architecture.

schema; the details of standard schema description for software systems are presented in

Section 4. Each software release is accompanied with generic agents that perform software

deployment processes by interpreting the description of the software release. The release dock
provides a programmatic interface for agents to access its services and content. Finally, the
release dock generates events as changes are made to the software releases that it manages.
Agents associated with deployed software systems can subscribe for these events to receive
notifications about specific release-side occurrences, such as the release of an update.

The field dock is a server residing at a software consumer site. The purpose of the field dock

is to serve as an interface to the consumer site. This interface provides information about the
state of the consumer site's resources and configuration; this information provides the context
into which software systems from a release dock are deployed. Agents that accompany software
releases "dock" themselves at the target consumer site's field dock. The interface provided by
the field dock is the only interface available to an agent at the underlying consumer site. This
interface includes capabilities to query and examine the resources and configuration of the
consumer site; examples of each might include installed software systems and the operating
system configuration.

The release dock and the field dock are very similar components. Each is a server where
agents can "dock" and perform activities. Each manages a standardized, hierarchical registry
of information that records the configuration or the contents of its respective sites and cre-

ates a common namespace within the framework. The registry model used in each is that of
nested collections of attribute-value pairs, where the nested collections form a hierarchy. Any
change to a registry generates an event that agents may receive in order to perform subse-

quent activities. The registry of the release dock mostly provides a list of available software
releases, whereas the registry of the field dock performs the valuable role of providing access
to consumer-side information.

Consumer-side information is critical in performing nearly any software deployment pro-

15

cess. In the past, software deployment was complicated by the fact that consumer-side in-

formation was not available in any standardized fashion. The field dock registry addresses
this issue by creating a detailed, standardized, hierarchical schema for describing the state
of a particular consumer site. By standardizing the information available within a consumer
organization, the field dock creates a common software deployment namespace for accessing
consumer-side properties, such as operating system and computing platform. This informa-
tion, when combined with the description of a software system, is used to perform specific
software deployment processes.

Agents implement the actual software deployment process functionality. When the instal-
lation of a software system is requested on a given consumer site, initially only an agent re-
sponsible for installing the specific software system and the description of the specific software
system are loaded onto the consumer site from the originating release dock. The installation
agent docks at the local field dock and uses the description of the software system and the
consumer site state information provided by the field dock to configure the selected software
system. When the agent has configured the software system for the specific target consumer
site, it requests from its release dock the precise set of artifacts that correspond to the software
system configuration.

The installation agent may request other agents from its release dock to come and dock
at the local field dock. These other agents are responsible for other deployment activities
such as update, adapt, reconfigure, and remove. Each agent performs its associated process
by interpreting the information of the software system description and the consumer site
configuration.

The wide-area event service in the Software Dock architecture provides a means of connec-
tivity between software producers and consumers for "push"-style capabilities. Agents that are
docked at remote field docks can subscribe for events from release docks and can then perform
actions in response to those events, such as performing an update. Siena (Section 3.1.5) is
currently used for event notification in the Software Dock. In addition to event notification,
direct communication between agents and release docks is supported and provided by standard
protocols over the Internet. Both forms of connectivity (events and direct messages) combine
to provide the software producer and consumer the opportunity to cooperate in their pursuit
of software deployment process support.

Deployable Software Description. In order to automate or simplify software deployment
processes it is necessary to have some form of deployment knowledge about the software system
being deployed. One approach to this requirement is the use of a standardized language or
schema for describing a software system; this is the approach adopted by the Software Dock

research project. In such a language or schema approach it is common to model software

systems as collections of properties, where semantic information is mapped into standardized
properties and values.

The Software Dock project has defined the Deployable Software Description (DSD) format

16

to represent its system knowledge. The DSD is a critical piece of the Software Dock research
project that enables the creation of generic deployment process definitions. The DSD provides
a standard schema for describing a software system family. In this usage, a family is defined as
all revisions and variants of a specific software system. The software system family was chosen
as the unit of description, rather than a single revision, variant, or some combination, because
it provides flexibility when specifying dependencies, enables description reuse, and provides
characteristics, such as extending revision lifetime, that are necessary in component-based
development.

We have identified five classes of semantic information that must be described by the
software system model. These classes of semantic information are:

• Configuration - describes relationships inherent in the software system, such as revi-

sions and variants, and describes resources provided by the software system, such as
deployment-related interfaces and services.

• Assertions - describe constraints on consumer-side properties that must be true otherwise
the specific deployment process fails, such as supported hardware platforms or operating
systems.

• Dependencies - describe constraints on consumer-side properties where a resolution is
possible if the constraint is not true, such as installing dependent subsystems or recon-
figuring operating system parameters.

• Artifacts - describe the actual physical artifacts that comprise the software system.

• Activities - describe any specialized activities that are outside of the purview of standard
software deployment processes.

A DSD family description is broken into multiple elements that address the five semantic
classes of information. The sections of a DSD family description are identification, imported
properties, system properties, property composition, assertions, dependencies, artifacts, in-
terfaces, notifications, services, and activities. Some of these sections map directly onto the

five semantic classes of information, others, such as system properties, property composition,

interfaces, and notifications, combine to map onto the configuration class of semantic infor-
mation. For more information about the DSD, refer to publications [13], [14], [15], and [27] in
Section 5.

Enterprise Software Deployment. Enterprise software deployment extends the current
single site software deployment to the problem of managing the integrity of software systems
on many sites throughout an organization. This extension requires that enterprise software
deployment deal with issues of scale, distribution, coordination, and heterogeneity. The low-
level details of the various software deployment life cycle processes are therefore not the focus of

17

enterprise software deployment; the focus is coordinating and managing deployment processes
across multiple sites.

For example, installing a software system on a thousand sites reveals issues that are not
present when installing the same software system on a single site. Complications arise due
to the necessity to consider policy decisions, such as ad hoc, phased-in, or all-or-nothing
installation. Also, heterogeneity issues are very important when dealing with a large number
of sites since the software deployment processes depend heavily on the precise configuration
of a site's hardware, operating system, and resources.

In order to provide a solution for enterprise software deployment, it is necessary for a
symbiotic relationship to exist between standard software deployment and enterprise software
deployment. Enterprise software deployment must build on top of a standard software deploy-

ment solution. The current Software Dock prototype provides limited support for enterprise

level operation (see the Admin Workbench discussion below); it remains an ongoing research
topic.

Prototype. The current Software Dock implementation includes a field dock, a release dock,
and a collection of generic agents for performing the install, update, adapt, and removal of
DSD described software systems. Additional tools, such as the Schema Editor for creating
DSD descriptions and the Docking Station for managing software at a field dock, are also
provided. The Software Dock is implemented entirely in Java and uses the remote procedure
call and agent capabilities of ObjectSpace's Voyager, which is also completely Java-based.

The prototype of the Software Dock provides the primary field dock interface shown in
Figure 12. From this interface, a user at the field dock can carry out various life cycle activities
including install of a new system and update, reconfigure, adapt, or remove of a previously
installed system. Most of these activities involve specifying various properties of the system.
Figure 13 shows the interface to the generic mechanism for defining or modify the properties
associated with a system.

Enterprise level operations are represented by the Admin(istrator) Workbench shown in
Figure 14. The Admin Workbench provides an entry point for software administrators to
monitor the result of deployment activities on managed sites, as well as, to perform remote
operations such as taking an inventory or pushing updates or reconfigurations.

This interface is still experimental since the set of enterprise-level operations is still in flux.
This current interface allows an administrator to do a variety of things.

• Monitor the activities of field docks,

• Take inventory of the systems installed at one or more field docks,

Force reconfigurations, removals, updates, and adaptations upon one or more field docks.

Enforce constraints on allowable configurations upon field docks.

18

•

ra Docking Station

Example •*■

Property
HTMLHelp
Help
WinHelp

Value
true
true
false

MM

UM.

Software

Dock
Figure 12: Field Dock Main Interface.

fejConfig Editoi

Example
fVferetar.:::'-"■ '1.2

; rSelectarty - ~ ■ —

^ S Templates for 12 S3

"Import Fiters |wj
I YSeiect any > - --—— - -

■] MS Word te
! ! V Select one

-1 ' j MS Word 9? W

. j ■ 1 MSWord95 Ü

I MSWord6J)fj

HTML i»i

«tort» Perfect D

ISpeBChecker £j

-• Grammar Checker f2

iphBteUser I Enabled

Owner jjoe User
Cache Size 15.95

©kay Cancel

Figure 13: Field Dock Property Manipulation Interface.

Jill Admin Workbench »ÜB!
•» •*

, - i "Monitor

■ßf)nstaij;:

E Update

E Reconfigure

D Adapt

1 ftRörijo^i#ii:ä

[y] Inventory [ß/Update

(^ Reconfigure Sfi Adapt

, f^? Remove @| Constrain

Figure 14: Enterprise-level Administrators Workbench Interface.

19

Software Dock InstallShield
Install 172.0s 168.0s
Remove 36.7s 80.0s
Reconfig (remove) 40.3s 90.0s
Reconfig (add) 113.3s 284.3s
Update 187.3s 149.6s

Table 1: Software Dock Performance Comparison.

Note that the communication between the administrator and the field docks and release docks
is provided by Siena (Section 3.1.5).

Experience. The current implementation was used in two joint demonstrations with Lock-
heed Martin Corporation at several of the EDCS "Demo Days" activities.

The first demonstration used a Web-based software system called the Online Learning
Academy (OLLA), which consisted of 45 megabytes of data and software in over 1700 files.
OLLA was comprised of two dependent subsystems called Disco and Harvest. The software de-
ployment processes of release, install, reconfigure, update, adapt, and remove were all initially
demonstrated using the generic agents along with the DSD description of all three software
systems.

The Second demonstration involved the use of the Software Dock with the Lockheed
EVOLVER project and was demonstrated at the Baltimore Demo Days meeting. A core tech-
nology of EVOLVER was a KQML-based mechanism for wrapping information sources and
making them available through the EVOLVER infrastructure. This involved two steps. First,
an information source was made available in a simple form by providing a KQML wrapper.
The second step require that the wrapped information source also export meta-information
that allowed EVOLVER to infer connections between the information source and other sources
available through EVOLVER.

We obtained an early release of the Java-based KQML wrapper system from Lockheed
Martin, and we applied it to the Software Dock to make the Dock's repository of configuration
information available through EVOLVER. Although there were some problems, the integration
was successfully completed. The biggest hurdle was to map between the Software Dock's data
model and the EVOLVER data model.

Experiments were also conducted to verify the performance of the Software Dock. These
experiments compared the Software Dock prototype to an existing deployment solution (i.e.,
InstallShield) for a specific software system. A DSD specification for versions 1.1.6 and 1.1.7

of the Java Development Kit (JDK) by Sun Microsystems was created in order to compare the
Software Dock deployment processes to the standard InstallShield self-extracting distribution
archive for the Microsoft Windows platform, Time to completion was the dimension for
comparison. Table 1 summarizes the results of the experiments.

The Software Dock performed as well or better than InstallShield in most cases, despite the

20

fact that file artifacts were dynamically packaged for the specific configuration requests. This
dynamicity was most obvious in the update process. The comparison is strained in the case
of update and reconfigure because standard InstallShield package for JDK does not properly
perform these activities, and it does not perform adapts at all.

3.1.5 Siena

There is a clear trend among experienced software developers toward designing large-scale
distributed systems as assemblies of loosely-coupled autonomous components; a trend that
was evident in EDCS especially. One approach to achieving loose coupling is an event-based

or implicit invocation design style. In an event-based system, component interactions are
modeled as asynchronous occurrences of, and responses to, events. To inform other components

about the occurrences of internal events (such as state changes), components emit notifications

containing information about the events. Upon receiving notifications, other components can

react by performing actions that, in turn, may result in the occurrence of other events and the
generation of additional notifications.

Several classes of applications make use of some sort of event service. Examples of such
applications are monitoring systems, user interfaces, integrated software development envi-
ronments, active databases, software deployment systems, content distribution, and financial
market analysis. Many of these applications are also inherently distributed, and thus they
require interaction among components running on different sites and possibly distributed over
a wide-area network.

Wide-area networks such as the Internet, with their vast number of potential producers and

consumers of notifications, create an opportunity for developing novel distributed event-based
applications in such fields as market analysis, data mining, indexing, and security. In general,
the asynchrony, heterogeneity, and inherent high degree of loose coupling that characterize
applications for wide-area networks suggest event interaction as a natural design abstraction
for a growing class of distributed systems. Yet to date there has been a lack of sufficiently
powerful and scalable middleware infrastructures to support event-based interaction in a wide-
area network. We refer to such a middleware infrastructure as an event notification service,

Siena [2, 3, 4, 9, 18] is our prototype Internet-scale event notification service that is rep-
resentative of the capabilities we envision for scalable event notification middleware. Siena is
designed to be a ubiquitous service accessible from every site on a wide-area network.

Architecture As shown in Figure 15, Siena is implemented as a distributed network of

servers that provide clients with access points offering an extended publish/subscribe interface.
The clients are of two kinds: objects of interest, which are the generators of notifications, and
interested parties, which are the consumers of notifications; of course, a client can act as both an
object of interest and an interested party. Clients use the access points of their local servers
to publish their notifications. Clients also use the access points to subscribe for individual

21

interested party

subscribe

notify

access point]
Figure 15: Distributed Event Notification Service.

notifications or compound patterns of notifications of interest. Siena is responsible for selecting

the notifications that are of interest to clients and then delivering those notifications to the
clients via the access points.

Siena is a best-effort service in that it does not attempt to prevent race conditions induced
by network latency. This is a pragmatic concession to the realities of Internet-scale services,
but it means that clients of Siena must be resilient to such race conditions. For instance,
clients must allow for the possibility of receiving a notification for a cancelled subscription. Of
course, an implementation would likely adopt techniques such as persistent data structures,
transactional updates to the data structures, and reliable communication protocols to enhance
the robustness of this best-effort service.

The key design challenge faced by Siena is maximizing expressiveness in the selection
mechanism without sacrificing scalability of the delivery mechanism. The scalability problem
can be characterized by the following dimensions:

• large number of objects publishing events and subscribing for notifications,

• large number of events,

• high event generation rates,

• objects distributed over a wide-area network (thus, low bandwidth, scarce connectivity
and reliability),

• events of the same class generated by many different objects,

• notifications of the same class of events requested by many objects,

• no centralized control nor global view of the structure of the event service.

22

Expressiveness refers to the power of the data model that is offered to publishers and

subscribers of notifications. Clearly the level of expressiveness influences the algorithms used to
route and deliver notifications, and the extent to which those algorithms can be optimized. As
the power of the data model increases, so does the complexity of the algorithms. Therefore, the
expressiveness of the data model ultimately influences the scalability of the implementation,
and hence scalability and expressiveness are two conflicting goals that must be traded off.

While we have not fully explored the nature of this tradeoff, we have investigated a number
of carefully chosen points in the tradeoff space. In particular, we designed a data model

for Siena that we believe is sufficiently expressive for a wide range of applications while still
allowing sufficient scalability of the delivery mechanism. Based on this data model, we designed
distributed server architectures and associated delivery algorithms and processing strategies,

and we evaluated and confirmed their scalability.

Interface The interface of the Siena event service allows objects to subscribe for specific
classes of events, by setting up filters, or for specific sequences of events, by setting up patterns.
Filters select events based on their content using a simple and yet powerful query language.
Patterns are combinations of filters that select temporal sequences of events.

Siena provides a flexible notification model that can serve application programmers as
well as end users. Event notifications (Figure 16) are structured as a set of attributes. Each
attribute has a name, a type, and a value.

Event filters (Figure 17) are structured as a set of simple relations. Each relation is an
attribute name, an operator, and a constant value.

Routing Optimization Siena delivers a scalable event service by adopting special dispatch-
ing protocols that aim at reducing network traffic and avoiding bottlenecks.

Depending on the topology of connections among Siena servers, hierarchical or peer-to-
peer, different algorithms have been implemented to deliver notifications. These are based
on the propagation of subscriptions (subscription forwarding) or on the propagation of adver-
tisements (advertisements forwarding). These two algorithms also roughly correspond to the
main strategies that Siena applies in filtering and multicasting notifications:

• upstream filtering and assembly: filters and patterns are pushed as close as possible to
the sources of events, thereby immediately pruning the propagation of notifications that
are not requested by any object.

• downstream replication: replication of notifications (multicasting) is pulled as close as
possible to the targets of notifications. The idea being that, in order for a notification
to reach several objects on distant networks, only one copy of that notification needs to
traverse slow internetwork paths. That notification is then replicated and routed to all

its destinations only when it gets to their local (less expensive) network.

23

Notification

Event = /economy/exchange/stock
Exchange^ NASDAQ
Stock = MSFT
Price = $2.34
Diff , = +1.2 %
Date = j.998 Jul 22 10:30:01 MST
;Quantity= 4321 :

Figure 16: Siena Event Notification Example.

Filter

Exchange= NASDAQ
Stock = MSFT
Price SlfifflBlKiilWBBBiffiHSB
Dif f ^^Ä^^^^^^^^^^^^^^^B

Figure 17: Siena Event Filter Example.

Figure 18 illustrates an example of hierarchical routing in Siena.

Experience. The design of Internet-scale systems requires a special effort for validation.
In particular, it is important to assess the impact of routing strategies and event pattern
recognition with respect to costs such as network traffic, CPU, and memory usage.

The architectures of Siena and its routing algorithms were studied by means of systematic
simulations in various network scenarios with different ranges of loads and different configu-
rations.

Currently, a prototype of Siena is used as wide-area messaging and event system of the

Software Dock. There are two main implementations of the Siena server. One (written in Java)
realizes a hierarchical server, while the other (written in C++) has a peer-to-peer architecture.
The client interface is currently available for both Java and C++.

24

o o
Figure 18: Hierarchical Routing Example.

3.2 Technical Transfer

3.2.1 Prototype Availability

The University of Colorado EDCS project prototypes are generally available via the World
Wide Web. Potential users are especially encouraged to obtain this software via SRM
(http://www.cs.colorado.edu/serl/software). Using SRM will ensure that the user will obtain,
in a single step and in a single package, all the necessary components required to install any
of our software systems. A detailed descriptions of each product, as well as the software itself,
is available at that page. In addition, users are encouraged to visit the University of Colorado
SERL web site (http://www.cs.colorado.edu/serl) to obtain background material related to
these prototypes and to obtain copies of the publications described in Section 5.

3.2.2 Other Technical Transfer Efforts

Recently, we were contacted by Harriet Cohen, Director of Product Management for Content-

Integrity, Inc. They are a Boston-based start-up that is in the final stages of beta test with a
product that embodies key configuration management concepts developed under this contract.

Dassault Systems explored the use of the Software Dock style architecture and approach to
support the electronic deployment of their software systems. Their first target is the Dassault
CATIA system, which is a very large CAD-CAM system consisting of a core system plus some
150 independently deployable application sub-systems. CATIA is used by numerous large

companies including Boeing and Chrysler, and the first deployment experiments will be joint
with Boeing.

The Software Dock has been provided to Nortel Networks to support their experiments
in push deployment of telecommunications software. As mentioned in Section 3.1.4, we also
integrated the Software Dock with two demonstration systems from Lockheed Martin.

25

The University of Massachusetts LASER project has adopted NUCM/SRM as their stan-
dard software release mechanism.

The software developed under this project has been released using SRM under the Univer-
sity of Colorado Software Engineering Research Laboratory (SERL) web site. SERL software
has been downloaded over 600 times. This includes SRM, NUCM, and DVS. Based on these
downloads, many organizations have registered as interested parties for this software so that
they can be notified of updates and changes to the software.

SRM was used as the primary release mechanism for software produced by the EDCS pro-

gram. A central server, located at the Software Engineering Institute, served as the repository
to which participating organizations released their systems. Subsequently, these systems were
retrieved by users from all over the world.

26

3.3 Students

The education and graduation of students is, of course, a primary activity for a Research
University such as the University of Colorado. This project has wholly or partially supported
a number of outstanding graduate students. Table 2 lists them alphabetically by last name.

Degree Dissertation Current
Student and Date Title Employment

Antonio Carzaniga Ph. D. 1999 Architectures for an Event Research Associate, Univer-
Notification Service Scalable sity of Colorado
to Wide-area Networks

John C. Doppke M. S. 1998 Software Process Modeling
and Execution Within Vir-
tual Environments

Consultant

Richard Hall Ph. D. 1999 Agent-based Software Con- Asst. Professor, Free Uni-
figuration and Deployment versity of Berlin

Andre van der Hoek Ph. D. 2000 A Reusable, Distributed Asst. Professor at the Uni-
Repository for Configura- versity of California, Irvine
tion Management Policy
Programming

Judith Stafford Ph. D. 2000 A Formal, Language- MTS at the Software Engi-
Independent, and Composi- neering Institute
tional Approach to Control
Dependence Analysis

Carlton Reid Turner Ph. D. 1998 Feature Engineering of Soft-
ware Systems

Lincap Corporation

Table 2: Alphabetical List of Graduated Students Associated with this Contract.

27

4 Conclusions

The University of Colorado EDCS project has been successful in achieving its objective: pro-
ducing innovative, useful, and interesting research results in the areas of software configuration
and deployment.

These research results were embodied in five prototype systems developed in whole or part
under this project.

1. NUCM - a generic, tailorable, peer-to-peer repository supporting distributed Configu-
ration Management.

2. SRM - a tool to manage the release of multiple, interdependent software systems from
distributed sites.

3. D VS - a tool to support distributed authoring and versioning of documents with complex
structure, and to support multiple developers at multiple sites over a wide-area network.

4. Software Dock - a distributed, agent-based framework supporting software system de-
ployment over a wide-area network.

5. Siena - an Internet-scale distributed event notification service allowing applications and
people to coordinate in such activities as updating software system deployments.

The results from this project have been widely disseminated in the form of reports, ar-
ticles, and other publications; software distributions to over 600 sites; technical transfers to
commercial practice; and graduating quality Ph. D. and M. S. students.

28

5 References and Bibliography

Reverse Chronological List of Publications Funded by this Grant.

[1] J.A. Stafford and A.L. Wolf, "Annotating Components to Support Component-Based
Static Analyses of Software Systems," Proceedings of Grace Hopper Conference 2000,
September 2000, Hyannis, MASS.

[2] A. Carzaniga, D.S. Rosenblum, and A.L.Wolf, "Achieving Expressiveness and

Scalability in an Internet-Scale Event Notification Service," Proc. of the 19th ACM
Symposium on Principles of Distributed Computing, July 2000, Portland OR.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Content-Based Addressing and

Routing: A General Model and its Application," Technical Report CU-CS-902-00,

January 2000, Department of Computer Science, University of Colorado, Boulder.

[4] A. Carzaniga, D.S. Rosenblum, and A.L.Wolf, "Challenges for Distributed Event
Services: Scalability vs. Expressiveness," ICSE 99 Workshop on Engineering
Distributed Objects (EDO'99), May 1999, Los Angeles CA.

[5] A. van der Hoek, "A Reusable, Distributed Repository for Configuration Management
Policy Programming," Ph. D. Thesis, January 21, 2000, Department of Computer
Science, University of Colorado, Boulder.

[6] C. Reid Turner, A. Fuggetta, L. Lavazza, and A.L. Wolf, "A Conceptual Basis for

Feature Engineering," Journal of Systems and Software, 49(1):3-15 (December 1999).

[7] A. van der Hoek, D. Heimbigner, and A.L. Wolf, "Capturing Architectural
Configurability: Variants, Options, and Evolution," Technical Report CU-CS-895-99,
December 1999, Department of Computer Science, University of Colorado, Boulder.

[8] J.A. Stafford and A.L. Wolf, "Annotating Components to Support Component-Based
Static Analyses of Software Systems," Technical Report CU-CS-896-99, December
1999, Department of Computer Science, University of Colorado, Boulder.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Interfaces and Algorithms for a

Wide-Area Event Notification Service," Technical Report CU-CS-888-99, October,
1999, Department of Computer Science, University of Colorado, Boulder.

[10] Andre van der Hoek, "Configurable Software Architecture in Support of Configuration
Management and Software Deployment," Proc. of the Doctoral Workshop of the 1999
Int'l. Conf. on Software Engineering, pages 732 - 733. May 1999, Los Angeles, CA.

29

[11] Richard Hall, Dennis Heimbigner, and Alexander L. Wolf, "A Cooperative Approach
to Support Software Deployment Using the Software Dock," Proc. of ICSE'99: The
1999 Int'l Conf. on Software Engineering, pages 174-183, May 1999, Los Angeles, CA.

[12] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory
. Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L.

Wolf, "An Architecture-Based Approach to Self-Adaptive Software," IEEE Intelligent
Systems Special Issue on Self-Adaptive Software, 14(3):54-62 (May/June 1999).

[13] D. Heimbigner, R.S. Hall, and A.L. Wolf, "A Framework for Analyzing Configurations
of Deployable Software Systems," Proc. of the Fifth IEEE Int'l Conference on

Engineering of Complex Computer Systems, pp. 32-42, October 1999, Las Vegas, NV.

[14] Richard Hall, "Agent-based Software Configuration and Deployment," Ph. D. Thesis,
April 1, 1999, Department of Computer Science, University of Colorado, Boulder.

[15] R.S. Hall, D. Heimbigner, and A.L. Wolf, "Specifying the Deployable Software
Description Format in XML," Technical Report CU-SERL-207-99, March 1999,
Software Engineering Research Laboratory, Department of Computer Science,
University of Colorado, Boulder.

[16] Daniele Compare, Paola Inverardi, and Alexander L. Wolf, "Uncovering Architectural
Mismatch in Component Behavior," Science of Computer Programming, 33(2) (Feb.
1999).

[17] Carlton Reid Turner, "Feature Engineering of Software Systems," Ph. D. Thesis, Dec.
1998, Department of Computer Science, University of Colorado, Boulder.

[18] Antonio Carzaniga, "Architectures for an Event Notification Service Scalable to
Wide-area Networks," Dec. 1998, Ph. D. Thesis, Politecnico di Milano,

[19] A. Carzaniga, E. Di Nitto, D.S. Rosenblum, and A.L. Wolf, "Issues in Supporting
Event-Based Architectural Styles," 3rd International Software Architecture Workshop
(ISAW3), November, 1998, Orlando, FL.

[20] Judith A. Stafford and Alexander L. Wolf, "Architecture-Level Dependence Analysis in
Support of Software Maintenance," Proc. of the 3rd Int'l Software Architecture
Workshop, November 1998, Orlando, FL.

[21] Andre van der Hoek, Dennis Heimbigner, and Alexander L. Wolf, "Versioned Software
Architecture," Proc. of the 3rd Int'l Software Architecture Workshop, November 1998,
Orlando, FLA.

30

[22] Richard Hall, Dennis Heimbigner, and Alexander L. Wolf, "Evaluating Software

Deployment Languages and Schema: An Experience Report," Proc. of the 1998 Int'l
Conf. on Software Maintenance, November 1998, Bethesda, MD,

[23] J.E. Cook and A.L. Wolf, "Event-Based Detection of Concurrency," Proc. of the 6th
Int'l Symposium on Foundations of Software Engineering, pages 35-45, November
1998, Orlando, FLA.

[24] Judith A. Stafford and Alexander L. Wolf, "'Dependence Analysis for Software

Architectures," Proc. of the ASE'98 Doctoral Symposium, October 1998, Honolulu, HI.

[25] Andre van der Hoek, Dennis Heimbigner, and Alexander L. Wolf, "Investigating the

Applicability of Architecture Description in Configuration Management and Software

Deployment," Technical Report CU-CS-862-98, September 1998, Department of
Computer Science, University of Colorado, Boulder.

[26] Andre van der Hoek, Antonio Carzaniga, Dennis Heimbigner, and Alexander L. Wolf,
"A Generic, Reusable Repository for Configuration Management Policy

Programming," Technical Report CU-CS-864-98, September 1998, Department of
Computer Science, University of Colorado, Boulder.

[27] Richard Hall, Dennis Heimbigner, and Alexander L. Wolf, "Requirements for Software
Deployment Languages," Proc. of the 8th Int'l Software Configuration Management
Workshop, July 1998, Brussels, Belgium.

[28] Andre van der Hoek, Dennis Heimbigner, and Alexander L. Wolf, "System Modeling

Resurrected," Proc. of the 8th Int'l Software Configuration Management Workshop,
July 1998, Brussels, Belgium.

[29] Judith A. Stafford, "Aladdin: A Tool for Analysis of Dependencies in Software

Architectures," Presentation for the Annual Symposium on Software Engineering and

Technology Transfer (ASSETT 1998), July 16, 1998, Motorola Museum, Schaumburg,
IL.

[30] J.E. Cook and A.L. Wolf, "Balboa: A Framework for Event-Based Process Data

Analysis," Proc. Fifth Int'l Conf. on the Software Process, pp. 99-110, June 1998,
Lisle, IL.

[31] Judith A. Stafford, Debra J. Richardson, and Alexander L. Wolf, "Architecture-level
Dependence Analysis for Software Systems," Proc. of the Int'l Workshop on the Role
of Software Architecture in Testing and Analysis, June 1998, Marsala, Italy.

[32] A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek, D. Heimbigner, and A. L.

Wolf, "A Characterization Framework for Software Deployment Technologies,"

31

Technical Report CU-CS-857-98, April 98, Department of Computer Science,
University of Colorado, Boulder.

[33] A. van der Hoek, R.S. Hall, A. Carzaniga, D. Heimbigner, and A.L. Wolf, "Software

Deployment: Extending Configuration Management Support into the Field," Crosstalk,
The Journal of Defense Software Engineering, 11(2) (February 1998).

32

6 Symbols, Abbreviations, and Acronyms

BADD Battlefield Awareness

CM Configuration Management

CPOF Command Post of the Future

DSD Deployable Software Description

DVS Distributed Versioning System

EDCS Evolutionary Design of Complex Software

GIG Global Information Grid

JBI Joint Battlespace Infosphere

NUCM Network Unified Configuration Management

RCS Revision Control System

SERL Software Engineering Research Laboratory (at the Uni-
versity of Colorado)

Siena Scalable Internet Event Notification Architectures

SRM Software Release Manger

WebDAV Web-based Distributed Authoring and Versioning

XML Extensible Markup Language

33

